
CIT – INTRODUCTION TO PROGRAMMING IN C

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

ONLINE
SUPPROT SERVICES

CERTIFICATE IN
INFORMATION TECHNOLOGY

IGNOU SC-2281

Jakhepal-Ghasiwala Road, Sunam
For more information visit us at: nirmancampus.co.in

Call us at: 9815098210, 9256278000

CIT – INTRODUCTION TO PROGRAMMING IN C

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

OPERATORS AND THEIR TYPES
Operators are the symbols used to perform specific operations. For example, + operator is used to
perform addition operation, > is used to compare values etc. These operators perform their operation
on the operands. Operands are the identifier on which operation is performed. Based on the operand,
operators can be classified as:

Unary Operators:
Those operators which require one operand to perform their operation are called unary operators.
Examples of these operators are: ++, --, !etc.

For example: a++, --b
Binary Operators:
Those operators which require two operands to perform their operation are called binary operators.
Examples of these operators are: +, -, *, %, &&, > etc. Most of the operators in C are Binary operators.
 For example: a+b, a>b
Ternary Operators:
Those operators which require three operands to perform their operation are called Ternary
operators. This operator is also called Conditional Operator. Example of this operator is: __?___:___
This is the only ternary operator in C language.
 For Example: big = a>b ?a : b ;

Operators can also be categorized according to their operations. They can be categorized as below.

1.) Arithmetic Operators.
2.) Comparison Operators
3.) Logical/Boolean Operators
4.) Assignment Operators

5.) Increment/Decrement Operators
6.) Bitwise Operators
7.) Conditional Operators
8.) Additional Operator

ARITHMETIC OPERATORS:
These operators are used for arithmetic operations. These are five operators. These are +, -, *, / and %.
All these are binary operators. Following table shows the operations of these operators:

Name Operator Description Example

Addition + Used to perform Addition of
numbers. 2+4 => 6 2.0+4.0 =>6.0

Subtract - Used to perform subtraction or
used as any unary minus. 6-2 => 4 6.0-4.0=>2.0

Multiply * Used to perform multiplication
of numbers. 7*2 => 14 7.0*2.0 =>14.0

Division / Used to perform division of
numbers.

5/2 => 2
Integer division

5.0/2.0 =>2.5
Real Division

Modulus % Used to get remainder value
after division of numbers. 7%4=>3 5.0%2.0

Not allowed

RELATIONAL OPERATORS:
These are also called comparison operators. These operators are used for comparing values. These
are 6 operators. These are >, <, >=, <=, == and !=. All these are binary operators. Following table shows
the operations of these operators:

CIT – INTRODUCTION TO PROGRAMMING IN C

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

Name Operato
r Description Exampl

e Result

Equal to = = Used to check whether two
values are equal

4= =5
5= = 5

False
True

Not Equal to != Used to check whether two
values are not equal

4! =5
4! =4

True
False

Greater then > Used to check whether first value
is greater than second

4>5
5>4

False
True

Less then < Used to check whether first value
is lass then second

4<5
5<4

True
False

Greater than
or equal to >=

Used to check whether first value
is greater than or equal to second
value

5>=5
6>=8

True
False

Less than or
equal to <=

Used to check whether first value
is lesser than or equal to second
value

4<=5
4<=2

True
False

LOGICAL OPERATORS
These are also called Boolean Operators. These operators are used to form compound relational
expressions. These operators are also used to compare values. These are 3 operators. These are &&
(AND), || (OR) and ! (NOT). AND and OR are binary operators and NOT is unary. Following table shows
the operations of these operators:

ASSIGNMENT OPERATORS
These Operators are used to assign/store values in a variable. The symbol of assignment operator is
’=’. Consider the following examples which show how to use assignment operator in C programs:
 a = - 2; // assigns –ve value (-2) to the variable.
 b = 5; // assigns value (5) to the variable.
 c = a + b; // assigns the result of expression to the variable.
 a = a + 10; // self-assignment of a variable.
Assignment operators can also be used as shorthand operators. Shorthand assignment operators are
useful in self-assignment statements. Following table shows the examples of shorthand operators
used in C:

Shorthand
Operator

Example for
Shorthand Assignment

Equivalent
Self-Assignment

+= a+ =2 a = a + 2
- = a- =2 a = a – 2
= a =2 a = a * 2
/= a / =2 a = a / 2
%= a%=2 a = a % 2

Table – List of Shorthand Assignment Operands

Name Operators Description Associatively Example Result

AND &&

Return true if both
operands are true
otherwise returns false Left to Right

3>5 && 4>5
3>5 && 4<5
3<5 && 4>5
3<5 && 4<5

False
False
False
True

OR ||

Return true if at least
one operand s are true Left to Right

3>5 || 4>5
3>5 || 4<5
3<5 || 4>5
3<5 || 4<5

False
True
True
True

NOT !
Return true if operand
is false & vice – versa Right to Left

!(3<5)
!(3>5)

False
True

CIT – INTRODUCTION TO PROGRAMMING IN C

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

INCREMENT AND DECREMENT OPERATOR
These are unary operators. They require only one operand. In C, ‘++’ is the increment operator and ‘--'
is the decrement operator. Increment operator adds one to the current value while the decrement
operator decreases one to the current value.
Consider the following example:
 int a = 5, b = 6;
 a ++ ; //a becomes 6
 b – –; //becomes 5
These operators can be classified into two categories. These categories are named as:

 Prefix Increment/Decrement operator. (++a/--a)
 Postfix Increment/Decrement operator. (a++/a--)

CONDITIONAL OPERATOR
It is the only ternary operator used in c language. It requires three operands to perform its operation.
This operator is used to carry out conditional operations. It can be used in place of if – else statement.
The syntax for conditional operator is:

Condition?Expression1 for True Condition:Expression2 for False Condition
Example of Ternary Operator:

int x, y, big;
x = 100;

 y = 15;
 big = x>y ?x : y;

EXPRESSION
An expression is the valid combination of operators and operands. Here, operands may be a variable
or it can be a constant. Consider the following example:

c = a+b;
a = c + 10;

Here c, a,b, and 10 are the operands and + and = are the operators. Expressions can be categorized
according to the operators used in the expressions:

1. Arithmetic Expressions
2. Relational Expressions
3. Logical Expressions
4. Mixed mode Expressions

1. Arithmetic Expressions
When Arithmetic operators are used in an expression, itis called as Arithmetic Expression. This
expressions return numeric value. For Example:

c=a+b c=a*b etc.
2. Relational Expressions
When relational operators are used in an expression, it is called as Relational Expressions. Relational
Expression returns either True (non zero value) or False (zero value). For example:
 a > b a = = b 5 > = 2 etc.
3. Logical expressions
When logical operators along with relational operators are used in the expression, then the
expression is termed as Logical Expression. Logical Expression also returns either True or False value.
For example:

(a > b)&&(a > c) (a > b) || (b > c) ! (a > b) etc.
4. Mixed mode expressions
When an expression contains more than one type of operator, it is called mixed mode expression. For
example:
 (a+b) >= (c*d)

CIT – INTRODUCTION TO PROGRAMMING IN C

IGNOU SC-2281 (NIRMAN CAMPUS, SUNAM)

HIERARCHY OR PRECEDENCE OF OPERATORS IN EXPRESSIONS
An expression may contain more than one type of operators. In such situation, which operator is
evaluated first?, is decided by the hierarchy of operators. The sequence of operators in which they are
applied on the operands in an expression is called the Precedence of Operators.
Consider the following examples which illustrates how expressions are evaluated using operators
precedence–

 a = 5 * 4 / 4 + 8 – 9 / 3; (* is evaluated)
 a = 20 / 4 + 8 – 9 / 3; (/ is evaluated)
 a = 5 + 8 – 9 / 3; (/ is evaluated)
 a = 5 + 8 - 3; (+ is evaluated)
 a = 13 - 3; (- is evaluated)

 a = 10;
TYPE CONVERSION
When value of one type is converted into other type, it is called Type Conversion. There are two types
of type conversions.

(1.) Automatic Conversion or Implicit Conversion
(2.) Casting Value or Explicit Conversion.

Automatic/Implicit Conversion:
This type of conversion is automatic. For this type of conversion, we use assignment (=) operator. It is
also called implicit conversion. This type of conversion is used when lower data type operand is
converted into higher data type. There is not loss of information in this type of conversion.
Consider the following example for automatic conversion:
 int m = 15;

float n = m;
Casting a value or Explicit Conversion
This is forceful conversion. For this type of conversion, we use caste operator. It is also called explicit
conversion. There may or may not be any loss of information in this type of conversion. This type of
conversion is used when higher data type operand is converted into lower data type.
The syntax for this type of casting is:

(Desired data type) Expression
For example:
 float m;

int n = 7;
m = (float)n/2;

